Must-watch: 500 Billion Reasons why IOTA

Life in the future cap. 2: Mobility

Life in the future cap. 2: Mobility

My series started with the intention to improve the imagination we might have for technologies that will be a part of our lives in the future.
The first part started with an introduction followed by my ideas how the local economy could function in 18 years. A vast change in the economy as a whole and a vast change for the majority of people.
The following part will be centred around the mobility and how it will be a fundamental change in our lives in that sense, that we mustn’t take care of security, traffic jams, time management, maintenance of our car, theft, and manipulation of the odometer anymore.
But another part is that cars will become modular and thus:  create jobs and a new level of security and service.
This part and the possibilities of a highly advanced mobility sector are so exciting that my imagination knows no end.
As we are all aware of the consequences of fossil fuel-based engines, my thoughts are based on the assumption that 99.99% of all cars in 2036 are running on electricity only. At least in the advanced regions of the world.

A new efficiency

There will be many manufacturers that will create modular parts of vehicles. Depending on how you want to use your car, you can buy different modules from many different manufacturers. The modules are designed so that they always fit together as part of a bigger system. Every car has an engine and batteries part, a storage and utility part, and a passenger and function part. In the future, cars are wrapped in a skin of photovoltaic panels. Whenever it’s exposed to the sun, it’s generating electricity. The electricity that can be used to charge the battery or that can be sold and shared into the grid. The mobility sector could be able to disrupt common solar collector manufacturer, while they are standing in the sun, next to your house. Efficiency is one of the major improvements for the fourth industrial revolutions. I’m therefore convinced that car manufacturers will disrupt the solar collector industry at least partly if they decide to integrate the production of photovoltaic-technologies to their facilities.
The majority of cars will be autonomous. Even the law will adapt to that because statistically spoken, there is no advantage in controlling vehicles with a human. The interaction of algorithms and AI between sensors, the engine, brakes, and the necessary security mechanisms are far superior to humans.

The degree of efficiency of the photovoltaic capabilities of a car will determine if cars of the future need to be charged with charging stations at all. Some vehicles will still need a charging-station infrastructure as they have to be functional even at night, but many cars, especially small cargo vehicles can be run on solar energy generated “on the run” entirely. Solar panels today have between 15 and 21% efficiency, that means only a fraction of the available energy is actually transformed into electrical usable power. Think about what happens when the efficiency is increased up to 75% or even more. Cars would be able to generate enormous amounts of power, which they could then use for their engines, services or even to sell the generated energy after they have been parked somewhere. But a necessity for that will be also a better battery technology.

That means that if they still need recharging, it will be automatic, but to me, it looks like the technology could advance to a point where recharging becomes a rare event.
Since cars are likely to become truly autonomous, I expect them to take care of almost everything. That includes cleaning, maintenance, upgrades, annual tech check, sensor-check etc.
I doubt that in 2036, owners of autonomous cars will ever see a garage again as the cars will automatically drive to them once a problem comes up.
These ideas of a better efficiency are the true revolution of the internet of things and the fourth industrial revolution.
Less consumption, a modular, multi-purpose approach and an improved security due to autonomous decentralized systems.

Decentralized Software and Fog computing

Decentralized apps (dapps), that are running on top of a distributed ledger, can be integrated into the cars. In 2036 the computational power available in vehicles will be big enough to calculate a solution to every issue in real-time.
There won’t be a single point of failure anymore since the software is running on millions of computers which are inside of vehicles, that are connected via several different types of connectivities to the IoT.
GPS, WLAN, Lora-Wan, Bluetooth, Radio, 5G, 6G, cameras and LiDaR for real-time 3D tracking of obstacles and other vehicles will make the car the perfect sensor drone which will generate and calculate data simultaneously.

This information will fuel other decentralized apps, that will follow certain algorithms in order to interact with systems at intersections or important areas within the infrastructure. Traffic-jams won’t be a problem anymore. Machine learning algorithms can be fed with the behaviour of ants in order to tell the system how to prevent traffic-jam waves before they are happening. A machine learning network could be applied to several other systems as well, not only traffic congestion preventions.
Some systems could calculate the risk of aquaplaning in dangerous conditions when it’s raining. Driving behaviour can be adjusted if schools are in the near area or animals have rutting season. The security adjustments are a real innovation, a normal human couldn’t learn under normal circumstances. At some point, the reaction time is limited due to the latency of information that has to be processed in nerves, the brain, and our muscles.
Machines only have the limitation of the speed of light. Everything else should be possible if edge and fog computation is applied.

Since at least Europe changed the law in favour of their customers, the data that is generated belongs to the citizens, according to the GDPR (General Data Protection Regulation).
Especially in the mobility sector, this data will be extremely valuable because services and infrastructures can be adjusted to changing habits, to traffic, to consumption levels or higher demand for certain goods. When the mobility is autonomous and systems are operating in a fog-computing situation, then these systems need to be fed with data in real-time. Data which can be monetized.


If we take a closer look at the modules of vehicles, then the possibilities seem to have no end.

A car can become an office, surgery, secure station (panic room), hotel room, delivery service, basic supply of medicine, they can even become little greenhouses that follow the sun automatically or in the future private planes that fly from city to city.
If people are in need of medical assistance the medi-modules can react in just a few minutes.  There can be either a human or a highly advanced automatic unit whose neural network algorithm has been fed with information in order to know which treatment fits best. The medi-module carries a license, the necessary tools and treatments and is always available.
There could be furthermore modules owned and maintained by do-it-yourself stores. Which can be filled with construction materials or tools and machines that can be shared for as long as people need them.
Cooking, cantina modules, a plumber, electricians, computer services or services one would find in a red-light district. The future holds all the possible technologies to enable a new world of service that relies on decentralized and modular systems.
An interesting thought is a modular car with a replaceable battery part. Whilst travelling long distances, the battery part of the modular car could be switched with recharged parts of countless owners along the way. Even a transition between autonomous cars and a trainlike speedway could become a possibility, where long “centipedes of single modules are bound together, that are travelling at high speed on railways for longer distances. Modular parts could attach or de-attach. The passenger does not need to leave his cabin even once, but he’s travelling through dozens of cities, stations and everything could be powered by sustainable energy in a sharing economy.
This way of travelling allows customers to receive exactly what they need to that time. Busy business people can do work and hold meetings, a developer can develop, women or children which are travelling alone are secure and every journey could offer a high level of privacy and comfort. Even decentralized cinemas could become reality.

The ownership of all of those modules could be a source of income.
Owners would let customers rent these modules on the way. They only had to take care of the maintenance, the infrastructure and the regulation. A perfect passive income source or option for businesses to create extra income while supporting a decentralized infrastructure.


One of the biggest horrors on can face on highways or German “Autobahnen” are wrong-way drivers. These occasions are rarely on purpose, and oftentimes because elderly drivers confuse streets. If intelligent systems can be integrated into autonomous driving modules, it would be an easy addition to arm them with a wrong-way driver defence system in order to stop them slowly and to protect incoming drivers with automatically performed evasion manoeuvres that are based on the information other cars are sharing in real-time.
The same protection could be integrated for rear-end collision, especially if sudden weather changes are registered by sensors. Swarm intelligence and AI are perfectly suited to adjust to environmental changes, that would nowadays lead to more accidents.
Similar systems could be used to fight a fire, to protect citizens, and to fight terrorism or criminals.

A decentralised network can send data and value, but beforehand it has to be ensured that the information is tamper-proof and unique.
Only then, customers can sell and produce data which belongs to them.
The security of these autonomous systems is a game-changer.
We need an overall protection of goods, data and integrity of information. The typical odometer fraud will be impossible as the manufacturing of a vehicle will be bound to a unique hash-value that will be secure and saved in the ledger in the near future.

The mobile sector will be a good example of how the economy will adapt to decentralized and autonomous systems and how it will start with the loss of jobs.  Eventually, however, this enables value for the society and new possibilities which can be created with a sharing economy due to modular builds of autonomous vehicles and the creation of infrastructure we will need for that.

I assume that this will take more than 18 years because infrastructural changes take a long time, even if we count in that innovation will be accelerated in the next 10 years.
However, a basic necessity of all of my thoughts is a system that can offer the communication and secure transfer of information and value between all connected devices and vehicles.

Because the most important backend technology is one that combines a high-level layer of security through encryption with anonymous streams of information, tamper-proof authentications, which are filled with biometrics and individual passwords that make it possible to use all kinds of sensitive services.
A system that is able to handle billions of transactions between modules, facilities, customers.
A never-stopping cycle of information, values, authentification and confirmation that boosts our new economy and mobility. IOTA is the first distributed ledger that can work in this highly specialized environment.
No other crypto-project is partition tolerant and simultaneously scalable and free to use.
The possibilities are truly endless.

The next part will cover a sustainable energy-usage.

Thumbnail image:

Share this article:

Leave a Reply

Your email address will not be published. Required fields are marked *